

Material

Ероху

Features & Benefits

- Seismic Rated as per ACI 355.4
- High Strength
- Non-shrink, high solids
- Long-term loading (creep) applications
- Non-sag formulation: good for vertical applications
- Suitable for over sized and core-drilled holes
- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete and masonry
- Cure times: 24 hours at 21°C, 72 hours at 10°C
- Easy hole-cleaning no power-brushing required
- Suitable for use in dry or water-saturated concrete
- For best results, store between 7°C and 32°C

Applications

- Rebar Dowelling
- Tension Zones
- Dry And Wet Concrete
- Threaded Rod Anchoring
- General Purpose Anchoring
- Overhead Anchoring (Tension Zones)
- Structural Steel
- Seismic Retrofit

Approvals

- Complies with AS5216
- Seismic testing per ACI 355.4
- ETA-11/0360 (OPTION 1)
- ICC-ES ESR-2508 (Concrete)
- IAPMO UES ER-265 (Masonry)
- NSF/ANSI Standard 61 (313 cm2/1000 L)
- Transport and Main Roads (QLD) product approval (Threaded rod and Reinforcing bar)

Working and Curing Time Schedule

Internal Concrete Temperature	Working Time	Curing Time (Dry Concrete)	Curing Time (Wet Concrete)
T anchorage base	t _{gel}	t cure,dry	t _{cure,wet}
≥ +10°C	60 min	72 h	144 h
≥ +21°C	45 min	24 h	48 h
≥ +32°C	20 min	24 h	48 h
≥ +43°C	12 min	24 h	48 h

^{*}Let anchor fully cure without disturbing.

SET-XP650-AU (650 ml) (Includes 2 mixing nozzle EMN22i)

Specifications - SET-XP & Accessories

Model No.	Description	Size	Box Qty
SET-XP650-AU	High-performance epoxy anchoring adhesive for cracked and uncracked concrete (Includes 2 mixing nozzles — EMN22i)	650ml	10
EDT22S	Manual dispensing tool for 650ml cartridges	_	1

SET-XP® Extra Performance Anchoring Adhesive — Gr 8.8 Threaded Rod

Installation Data

Description	Symbol	Units	Threaded Rod Size (mm)					
Description	Syllibol		M12	M16	M20	M24	M27	
Nominal Insert Diameter	d		12	16	20	24	27	
Drill Hole Diameter	d _o		14	18	24	28	30	
Minimum Embedment Depth	h _{ef,min}	mm	70	80	90	100	110	
Maximum Embedment Depth	h _{ef,max}		240	320	400	480	540	
Clearance Hole Diameter in Fixture	d _f		14	18	22	26	30	
Installation Torque	T _{inst, max}	Nm	40	60	80	100	120	

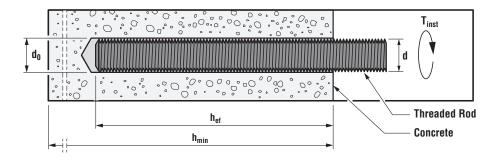
Concrete Thickness, Edge Distance and Spacing

Description	Symbol	Units	M12	M16	M20	M24	M27		
Minimum Concrete Thickness	h _{min}		$h_{ef} + 30 mm$ $h_{ef} + 2 d_o$						
Minimum Edge Distance	C _{min}		80	100	115	135	155		
Minimum Spacing	S _{min}	mm	45	60	70	80	90		
Critical Edge Distance	C _{cr,N}				1.5 x h _{ef}				
Critical Spacing	S _{cr,N}		3 x h _{ef}						

Design Resistance — Single Anchor, No Concrete Edge or Spacing Influence

Description	Symbol	Units	M12	M16	M20	M24	M27			
Embedment Depth	h _{ef}	mm	110	140	180	220	240			
Minimum Concrete Thickness			140	176	228	276	300			
Uncracked Concrete										
TENSION	N _{Rd}	kN	33.6	33.5	53.9	71.1	67.9			
SHEAR	V _{Rd}	KIN	27.2	50.4	78.4	113	147			
		Crac	ked Concrete							
TENSION	N _{Rd}	LANI	11.9	15.1	16.2	23.7	29.1			
SHEAR	V_{Rd}	kN	27.2	42.2	45.2	66.4	81.4			

- 1. Concrete strength is 30 MPa (cylinder) unreinforced, hole condition is "dry, damp or wet, and temperature."
 2. Tabulated loads are valid at critical spacing and critical edge distance only.
 3. N_{Rd} and V_{Rd} is based on use of a Grade 8.8 threaded insert. Verify capacity if using a different steel grade.
 4. All design resistances are derived from the product's ETA (European Technical Assessment). Concrete strength is 30 MPa (cylinder) unreinforced, hole condition is "dry, damp or wet", and temperature range 24 °C long-term/43 °C short-term.


SET-XP® Extra Performance Anchoring Adhesive — Gr 8.8 Threaded Rod

Steel Design Resistance (Tension)

Description	Symbol	Units	M12	M16	M20	M24	M27
Steel Grade 5.8			28.0	52.7	82.0	118	153
Steel Grade 8.8	$N_{Rd,s}$	kN	44.7	84.0	131	188	245
Stainless Steel A4			31.6	58.8	92.0	132	80.4

Steel Design Resistance (Shear)

Description	Symbol	Units	M12	M16	M20	M24	M27
Steel Grade 5.8			16.8	31.2	48.8	70.4	92.0
Steel Grade 8.8	$V_{Rd,s}$	kN	27.2	50.4	78.4	113	147
Stainless Steel A4			19.2	35.3	55.1	79.5	48.3

SET-XP® Extra Performance Anchoring Adhesive — Rebar Grade B500 (DIN 488-2)

Installation Data

Description	Symbol	Units	Rebar Size (mm)					
Description		Offits	12	14	16	20	25	
Drill Hole Diameter	d _o	mm	16	18	20	25	32	
Minimum Embedment Depth	h _{ef,min}		70	75	80	90	100	
Maximum Embedment Depth	h _{ef,max}		240	280	320	400	500	

Concrete Thickness, Edge Distance and Spacing

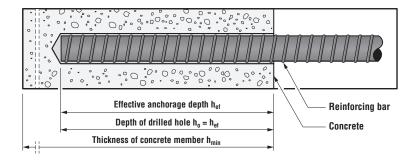
Description	Symbol	Units	12	14	16	20	25		
Minimum Concrete Thickness	h _{min}		$h_{ef} + 30mm$ $h_{ef} + 2d_o$						
Minimum Edge Distance	C _{min}		80	90	100	115	135		
Minimum Spacing	S _{min}	mm	45	50	60	70	80		
Critical Edge Distance	C _{cr,N}		1.5 x h _{ef}						
Critical Spacing	S _{cr,N}		3 x h _{ef}						

Design Resistance — Single Rebar, No Concrete Edge or Spacing Influence

Description	Symbol	Units	12	14	16	20	25			
Embedment Depth	h _{ef}	mm –	110	130	140	180	220			
Minimum Concrete Thickness			140	166	180	230	284			
Uncracked Concrete										
TENSION	N _{Rd}	kN	31.1	25.4	31.3	44.0	52.8			
SHEAR	V_{Rd}	KIN	20.7	28.0	36.7	57.3	90.0			
		Crac	ked Concrete							
TENSION	N _{Rd}	kN	11.5	11.1	9.8	15.7	24.0			
SHEAR	V_{Rd}		20.7	26.7	23.5	37.7	57.6			

SET-XP® Extra Performance Anchoring Adhesive — Rebar Grade B500 (DIN 488-2)

Rebar Strength Tension


Description	Symbol	Units	12	14	16	20	25
Design Resistance	$N_{Rd,s}$		44.3	60.7	79.3	124	193
Nominal Yield Strength	f _{yk}	kN	56.5	77.0	101	157	243
Nominal Tensile Strength	f _{uk}		62.2	84.7	111	173	270

Rebar Strength Shear

Description	Symbol	Units	12	14	16	20	25
Design Resistance	$V_{Rd,s}$	kN	20.7	28.0	36.7	57	90.0

- Concrete strength is 30 MPa (cylinder) unreinforced, hole condition is "dry, damp or wet", and temperature range 24°C long-term/43°C short-term. Tabulated loads are valid at critical spacing and critical edge distance only.

- All design resistances are derived from the product's ETA (European Technical Assessment). Nominal yield strength (f_{yk}) for Gr 500B Rebar is determined by the equation: $f_{yk} = 500$ MPa x A_{nom} Nominal tensile strength (f_{uk}) for Gr 500B Rebar is determined by the equation: $f_{yk} = 550$ MPa x A_{nom}

