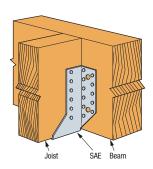
SAE — Face Fix Joist Hanger

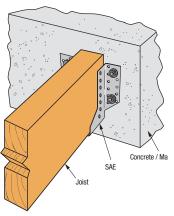
Material: Carbon Steel 2mm thick; Stainless Steel 1.5mm thick

Finish: Z275 Galvanised Corrosion Resistance Level

Size: See illustration on the right and table below


Features & Benefits

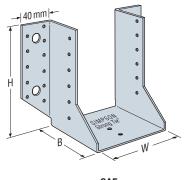
- Manufactured in heavier gauge steel for a stronger load capacity
- Big seat for joists provides greater strength support
- Quick and simple installation
- May be fastened to the header material with either nails or bolts
- Can be installed on solid timber header, I-Beam or concrete/masonry wall
- Stainless steel versions available for applications that require a superior level of corrosion resistance
- Compatible with Strong-Drive® SD screws


Installation

- Use all specified fasteners
- Verify that the header can take the fasteners specified in the table
- SAE hangers can be installed by filling all round holes, or all bolt holes, with the specified fasteners. A combination of the two would not give any increase to the performance values
- The hangers have bolt holes for 10mm or 12mm fasteners into the face
- The timber bolted capacity to be determined according to the relevant standards. Do not exceed the load values given in the table
- The hanger depth is to be at least 60% of the carried member depth to prevent rotation, unless additional lateral restraint is added to the top of the carried member

Construction Details

SAE Installation



SAE Fix Joist on Concrete Installation

SAE Technical Data

Model No.	Joist Size (mm)		Dimensions ⁵ (mm)			Fasteners (No. – Length x Dia., mm)		Design Capacity (kN)		
	Width	Height	W		В	Face	Joist	Uplift k ₁ = 1.14	Floor k ₁ = 0.69	nload Roof k ₁ = 0.77
SAE200/46/2	45	90-120	45	77	84	8 – 38 x 3.75	4 – 38 x 3.75	3.18	6.25	6.50
SAE250/46/2		115-150	45	102		12 – 38 x 3.75	7 – 38 x 3.75	5.57	7.27	7.27
SAE340/46/2		160-220	45	147		22 – 38 x 3.75	12 – 38 x 3.75	9.55	13.06	13.06
SAE500/46/2		240-340	46	227		34 – 38 x 3.75	18 – 38 x 3.75	14.33	18.60	18.60
SAE600/47/2		292-462	47	276	88	40 – 38 x 3.75	22 – 38 x 3.75	-	-	-

- Design Capacity is the lesser of (1) the Characteristic Capacity multiplied by the Australian Capacity Factor, and applicable the k modification factors following AS 1720.1
 and (2) the Serviceability Capacity which is the load at 3.2mm joint slip. Design Capacity is the minimum of test data and structural joint calculation.
- 2. The Capacity Factor (ϕ) is 0.85 for nails and screws for structural joints in a Category 1 application. Reduce tabulated values where other Category applications govern.
- 3. Duration of Load Factor (k₁) is as shown. Reduce Duration of Load Factor where applicable. Capacities may not be increased.
- 4. Timber species for joint design is seasoned Radiata Pine, which is Australia Joint Group JD4 per AS 1720.1 Table H2.4.
- 5. Dimensions W, H and B are for the interior of the hanger.

SAE